An annular solar eclipse occurred at the Moon’s descending node of orbit on Tuesday, February 16, 1999, with a magnitude of 0.9928. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 7.9 days after apogee (on February 8, 1999, at 8:50 UTC) and 4.3 days before perigee (on February 20, 1999, at 14:30 UTC).

Annularity was visible in the southern Indian Ocean including the Prince Edward Islands, South Africa (the northern part of Marion Island and the whole Prince Edward Island), and Australia. A partial eclipse was visible for parts of Southern Africa, Antarctica, Australia, Indonesia, the Philippines, and western Oceania.

Images

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Related eclipses

Eclipses in 1999

  • A penumbral lunar eclipse on January 31.
  • An annular solar eclipse on February 16.
  • A partial lunar eclipse on July 28.
  • A total solar eclipse on August 11.

Metonic

  • Preceded by: Solar eclipse of April 29, 1995
  • Followed by: Solar eclipse of December 4, 2002

Tzolkinex

  • Preceded by: Solar eclipse of January 4, 1992
  • Followed by: Solar eclipse of March 29, 2006

Half-Saros

  • Preceded by: Lunar eclipse of February 9, 1990
  • Followed by: Lunar eclipse of February 21, 2008

Tritos

  • Preceded by: Solar eclipse of March 18, 1988
  • Followed by: Solar eclipse of January 15, 2010

Solar Saros 140

  • Preceded by: Solar eclipse of February 4, 1981
  • Followed by: Solar eclipse of February 26, 2017

Inex

  • Preceded by: Solar eclipse of March 7, 1970
  • Followed by: Solar eclipse of January 26, 2028

Triad

  • Preceded by: Solar eclipse of April 17, 1912
  • Followed by: Solar eclipse of December 16, 2085

Solar eclipses of 1997–2000

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.

The partial solar eclipses on July 1, 2000 and December 25, 2000 occur in the next lunar year eclipse set.

Saros 140

This eclipse is a part of Saros series 140, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on April 16, 1512. It contains total eclipses from July 21, 1656 through November 9, 1836; hybrid eclipses from November 20, 1854 through December 23, 1908; and annular eclipses from January 3, 1927 through December 7, 2485. The series ends at member 71 as a partial eclipse on June 1, 2774. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 11 at 4 minutes, 10 seconds on August 12, 1692, and the longest duration of annularity will be produced by member 53 at 7 minutes, 35 seconds on November 15, 2449. All eclipses in this series occur at the Moon’s descending node of orbit.

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Notes

References

  • Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC
    • Google interactive map
    • Besselian elements

Total Solar Eclipse, February, 15th 1961(!) Alassio/Italy

Solar eclipse of February 16, 1999 Wikipedia

1999 uk solar eclipse hires stock photography and images Alamy

Solar Eclipse Of February 26 1998 Photos and Premium High Res Pictures

Solar eclipse of August 11, 1999 Alchetron, the free social encyclopedia